Effects of antibodies against dynein and tubulin on the stiffness of flagellar axonemes
نویسندگان
چکیده
Antidynein antibodies, previously shown to inhibit flagellar oscillation and active sliding of axonemal microtubules, increase the bending resistance of axonemes measured under relaxing conditions, but not the bending resistance of axonemes measured under rigor conditions. These observations suggest that antidynein antibodies can stabilize rigor cross-bridges between outer-doublet microtubules, by interfering with ATP-induced cross-bridge detachment. Stabilization of a small number of cross-bridge appears to be sufficient to cause substantial inhibition of the frequency of flagellar oscillation. Antitubulin antibodies, previously shown to inhibit flagellar oscillation without inhibiting active sliding of axonemal microtubules, do not increase the static bending resistance of axonemes. However, we observed a viscoelastic effect, corresponding to a large increase in the immediate bending resistance. This immediate bending resistance increase may be sufficient to explain inhibition of flagellar oscillation; but several alternative explanations cannot yet be excluded.
منابع مشابه
The axonemal microtubules of the Chlamydomonas flagellum differ in tubulin isoform content.
Little is known of the molecular basis for the diversity of microtubule structure and function found within the eukaryotic flagellum. Antibodies that discriminate between tyrosinated alpha tubulin and post-translationally detyrosinated alpha tubulin were used to localize these complementary tubulin isoforms in flagella of the single-celled green alga Chlamydomonas reinhardtii. Immunofluorescenc...
متن کاملA monoclonal antibody against the dynein IC1 peptide of sea urchin spermatozoa inhibits the motility of sea urchin, dinoflagellate, and human flagellar axonemes.
To investigate the role of axonemal components in the mechanics and regulation of flagellar movement, we have generated a series of monoclonal antibodies (mAb) against sea urchin (Lytechinus pictus) sperm axonemal proteins, selected for their ability to inhibit the motility of demembranated sperm models. One of these antibodies, mAb D1, recognizes an antigen of 142 kDa on blots of sea urchin ax...
متن کاملThe polyglutamylated lateral chain of alpha-tubulin plays a key role in flagellar motility.
To investigate whether a specific isotype of tubulin is involved in flagellar motility, we have developed and screened a panel of monoclonal antibodies (mAb) generated against sea urchin sperm axonemal proteins. Antibodies were selected for their ability to block the motility of permeabilized sperm models. The antitubulin mAb B3 completely inhibited, at low concentrations, the flagellar motilit...
متن کاملHigh-frequency vibration in flagellar axonemes with amplitudes reflecting the size of tubulin
Flagellar axonemes of sea urchin sperm display high-frequency (approximately 300 Hz) vibration with nanometer-scale amplitudes in the presence of ATP (Kamimura, S., and R. Kamiya. 1989. Nature (Lond.). 340:476-478). The vibration appears to represent normal mechanochemical interaction between dynein and microtubules because the dependence of the frequency on MgATP concentration is similar to th...
متن کاملStructural and functional reconstitution of inner dynein arms in Chlamydomonas flagellar axonemes
The inner row of dynein arms contains three dynein subforms. Each is distinct in composition and location in flagellar axonemes. To begin investigating the specificity of inner dynein arm assembly, we assessed the capability of isolated inner arm dynein subforms to rebind to their appropriate positions on axonemal doublet microtubules by recombining them with either mutant or extracted axonemes...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of Cell Biology
دوره 91 شماره
صفحات -
تاریخ انتشار 1981